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Abstract – Saccades are rapid eye movements that turn both eyes in the
same direction.  Brainstem omnipause neurons gate saccades.  Most
natural shifts of the fixation point are between targets lying in
different directions and at different distances requiring a combination
of saccades and vergence.  We investigated whether the visual
stimulus, the saccadic command or the vergence command turns off
omnipause neurons during gaze shifts.  Using the scleral search coil
technique, eye movements were measured in seven normal subjects, as
they made voluntary, disjunctive gaze shifts comprising saccades and
vergence movements.  Conjugate oscillations of small amplitude and
high frequency were identified during the vergence movement that
followed the initial saccade.  These oscillations, which are an indication
that the omnipause neurons are turned off, corresponded to the
saccade onset, and not the vergence eye movement or the visual
stimulus.  These data were used to test and modify a model of the
human saccade-vergence system. 
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I. INTRODUCTION

A prerequisite for clear binocular vision is that the fovea of each
eye, which contains the highest density of photoreceptors, be
pointed at the object of regard.  Under natural conditions, most
shifts of our point of visual fixation are between objects that lie in
different directions and different distances in the environment.  The
ability to move the point of binocular fixation from one target to
another is achieved by two distinct types of eye movements –
saccades and vergence [1].

Voluntary shifts of the angle of gaze between objects located in
different directions are achieved by saccades – rapid eye
movements that carry the eyes in the same direction (versional or
conjugate movements).  Voluntary shifts of the point of fixation
between objects lying at different depths in the environment require
vergence movements, during which the eyes rotate in opposite
directions (disjunctive rotations).  Saccades take less than 100 ms
for completion whereas vergence movements may require several
seconds.  Saccades and vergence movements are generated by
separate populations of “burst neurons,” which lie in the brainstem
[2,3].

Saccadic burst neurons are inhibited by omnipause neurons,
which lie in the pons of the brainstem [4].  Electrical stimulation of
omnipause neurons stops saccades in mid-flight [5].  Recent studies
have suggested that omnipause neurons gate both saccadic and
vergence burst neurons, and thus act as a premotor switch that
allows gaze-shifts [6,7].  Omnipause neurons receive motor
commands from the frontal eye fields and the superior colliculus
[8], and also respond to visual stimuli [9].  In this study, we

investigated whether it was  the visual stimulus, the saccadic
command, or the vergence command that triggered the omnipause
“switch” to permit a shift in the point of fixation (Fig. 1).  Our
experimental strategy was to look for small, high-frequency
oscillations, which are a behavioral marker that the omnipause
neurons are turned off [1].  We used our data to test predictions of
a current model for combined saccade-vergence movements.

II. METHODS

We studied seven normal subjects, all of whom gave informed
consent.  The study was conducted in accordance with the tenets of
the Declaration of Helsinki and was approved by our Institutional
Review Board. 

We measured horizontal and vertical movements of each eye
using the magnetic search-coil technique, with 6-foot field coils that
used a rotating magnetic field in the horizontal plane and an
alternating magnetic field in the vertical plane.  Search coils were
calibrated before each experimental session.  The system was
98.5% linear over an operating range of ± 20°, the SD of system
noise was less than 0.02° and cross talk between horizontal and
vertical channels was less than 2.5%.

Subjects alternately switched their point of fixation between near
and far targets, both aligned on their midlines.  The far visual
stimulus was a red laser spot at 1.2 m, and the near target was a
green LED at either ~15 cm or ~25 cm.  Each target was alternately
illuminated in a predictable sequence, every 1.25 s. 

To avoid aliasing, coil signals were passed through Krohn-Hite
Butterworth filters (bandwidth 0-150 Hz) before digitization at 500
Hz with 16-bit resolution.  These digitized coil signals were filtered
with an 80-point software filter (Remez FIR, bandwidth 0-100 Hz).
The Remez filter is applied twice, forward and backward, so as to
cancel out the phase shift.  Also, any oscillations introduced by the
filtering operation is symmetrical, and application of the filter in
both directions would eliminate these.  We compared original and
filtered signals of eye position and velocity, and detected no
attenuation or phase shift.  Eye velocity was obtained using a four-
point differentiator based on a least-squares procedure that
produced similar peak values to, but introduced less noise than, a
simple two-point differentiation algorithm [1].  With this
differentiator and a digitization frequency of 500 Hz, the bandwidth
of the first derivative was 0 to 148 Hz.  Recording  from a search
coil fixed to a stationary mounting, using this differentiator, the
overall system noise had an SD of less than 1.0°/s for velocity.  All
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Fig. 1. A schematic showing the possible trigger signals to the omnipause neurons that in turn gate the saccadic and vergence burst neurons to make the eyeball
execute a combined saccade-vergence movement.

responses were analyzed interactively, with particular attention to
responses that preceded the stimulus jump (predictive responses).

III. RESULTS

All subjects showed some anticipatory responses, each consisting
of a vergence drift, accompanied by a small saccade, that preceded
target jumps.  Overall, predictive responses occurred during 95% of
divergence and 85% of convergence movements.  In all trials, an
initial vergence movement preceded the saccade, and this was
always free of high-frequency oscillations.  At the onset of the
saccadic component, conjugate oscillations at around 30 Hz
commenced, and these were sustained during the part of the
vergence movement that continued after the saccade was completed
(Fig. 2A).  High-frequency oscillations were consistently absent
before the saccade, but often commenced before the visual stimulus
jumped. 

 
IV. DISCUSSION

Referring to the experimental questions summarized in Fig. 1:
High-frequency conjugate oscillations, which indicate that
omnipause neurons were switched off, never occurred during the
vergence movement that preceded the saccade; they always
commenced after the initial saccade, and they occurred during
anticipatory responses (before the visual target jumped to its new
position).  Thus, these results indicate that the saccadic command
causes omnipause neurons to be turned off, not the vergence

command and not the visual stimulus for the gaze shift.

Tests Of A Saccade-Vergence Model

We used the present data to test a current model for saccade-

vergence interactions, described by Zee and colleagues [7].  To
simulate the vergence-saccade pattern that we observed, we
implemented this model using MATLAB/SIMULINK, and
presented the saccadic command 10 ms after the vergence
component.  We did not attempt to simulate the presaccadic
vergence response nor did we allow an interaction between
vergence and saccadic burst neurons.  Our focus of interest was
whether conjugate oscillations, such as we observed (Fig 2A), were
generated by the model, since these are the behavioral marker for
the brainstem saccadic switch.  We found that to produce these
oscillations (Fig. 2B), we needed to increase the gain of saccadic
burst neurons for small movements.  This result suggests that the
gain of the saccadic system for small motor errors (desired change
in direction of fixation – Fig. 1) is larger than Zee and colleagues
suggested, and that if omnipause neurons are turned off, but no
saccadic command is present (after the saccade), then small
conjugate oscillations at about 30Hz occur.  Some normal subjects
can voluntarily induce these oscillations using a vergence effort
(“voluntary nystagmus”) [10].  Our data indicated that a small
saccade is needed to turn off the omnipause switch and that a high
gain of burst neurons is required to sustain the oscillations.
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Fig. 2. (A) Representative records of individual responses when one subject shifted the fixation point from the far target to the near target (convergence). The targets
were aligned on the subjects’ midlines. The target motion, vergence movement, version movement, the vergence velocity, and the version velocity are plotted. (B)

Results from the simulation of the saccade-vergence model by Zee and colleagues. To produce the conjugate oscillations, we needed to increase the gain of the saccadic
burst neurons. We did not attempt to simulate the anticipatory vergence drift before the occurrence of the saccade. In both plots, note  different scales for eye position

and eye velocity. 
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V. CONCLUSION

We have shown that a behavior marker of a brainstem motor switch
can be used to detect the nature of the sensory and motor commands
that drive ballistic eye movements.  Our data suggest a modification
to a current model that accounts for combined saccade-vergence
shifts of the point of fixation.
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